Wave and current loads


Need more information about the PSE Software?

API Specification for Drilling and Well Servicing Structures (5th edition)

Wave and current loads

Wave and current loads generated forces applied to submerged structural members in platforms and floating hulls are analyzed through linear and nonlinear kinematics in accordance with the API RP 2A specifications.

The PSE software computes wave and current forces applied on the structural members. The wave kinematics can be established using either Airy’s linear theory or Fenton’s nonlinear theory.

The linear kinematic theory is valid where the wave height is small compared to the water depth. On the other hand, the nonlinear kinematic theory, proposed by J.D. Fenton, solves the motion equations by representing the velocity potential and surface elevation with a Fourier series.


The later method minimizes the error of each parameter governing the wave motion equations and is valid over the entire spectrum.

The PSE software accounts for the following wave profiles and kinematic parameters:

  • Wave period
  • Incidence angle
  • Elevation of the sea bed
  • Elevation of the still water line (SWL)
  • Kinematic reduction factor
  • Crest position criterion

Preview of the wave surface profiles, velocities and accelerations at any point is readily available.

According to commentary C.3.2.1 of the design code API RP-2A-2003, the Doppler effect is accounted for by calculating an apparent period defined as the wave period as seen by an observer moving with the current.

Marine growth increases the cross section diameter and surface roughness of the members and it is defined by a set of elevation-thickness pairs.

In the PSE software, the current profile is described with respect to the sea bed. The current speed is defined by a set of elevation-velocity-angle triplets and the reduction of the current speed in the vicinity of the structure or the blockage factor is accounted for.


In order to combine the current with the wave profile, the current needs to be stretched, or compressed, to the local wave surface. Two stretching methods are available:


  • The linear stretching method, also known as the Wheeler stretching
  • The nonlinear method, or hyperbolic stretching

The input for the member wave loads consists of the following six parameters:


  • Current profile
  • Wave profile
  • Marine growth profile
  • Drag coefficient
  • Inertia coefficient
  • Shielding factor

The member forces, calculated using Morison equation, vary according to the position of the waves with respect to the structure. In order to obtain the maximum forces in the members, the critical position of the wave crest is determined by the program.

KEY features

The PSE is a structural engineering software solution for the analysis, design and rehabilitation of drilling structures including drilling masts, derricks and substructures.

The advanced structural analysis of the PSE software allows engineers to achieve specialized analyses crucial to offshore and onshore projects related to the oil and gas industry.

Wind loads, based on the velocity component approach, are defined according to API 4F Specification for Drilling and Well Servicing Structures (5th edition).

Vessel dynamic motions are defined according to API 4F Specification for Drilling and Well Servicing Structures (5th edition).

Other environmental forces such as wave and current loads are also considered for the analysis and design of offshore drilling structures.

The PSE software allows to verify, design and optimize steel members of drilling structures according to various international design codes.